Forecasting value-at-risk by encompassing CAViaR models via information criteria
نویسندگان
چکیده
منابع مشابه
CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles
Value at risk (VaR) is the standard measure of market risk used by financial institutions. Interpreting the VaR as the quantile of future portfolio values conditional on current information, the conditional autoregressive value at risk (CAViaR) model specifies the evolution of the quantile over time using an autoregressive process and estimates the parameters with regression quantiles. Utilizin...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملForecasting Value-at-Risk Using High-Frequency Information
in the prediction of quantiles of daily Standard & Poor’s 500 (S&P 500) returns we consider how to use high-frequency 5-minute data. We examine methods that incorporate the high frequency information either indirectly, through combining forecasts (using forecasts generated from returns sampled at different intraday interval), or directly, through combining high frequency information into one mo...
متن کاملforecasting value-at-risk using conditional volatility models: evidence from tehran stock exchange
in this paper, we investigate the performance of parametric arch class models to forecast out-of-sample var for two portfolios of tehran stock exchange (tse) companies (market portfolio and a portfolio of 50 liquid companies), using a number of distributional assumptions and sample sizes at low and high confidence levels. we find, first, that leptokurtic distributions are able to produce better...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Data and Information Science Society
سال: 2013
ISSN: 1598-9402
DOI: 10.7465/jkdi.2013.24.6.1531